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Abstract. We analyse the spherical model with frustration induced by an external gauge
field. This has been recently mapped in infinite dimensions onto a problem ofq-deformed
oscillators, whose real parameterq measures the frustration. We find the analytic solution of
this model by suitably representing theq-oscillator algebra withq-Hermite polynomials. We
also present a related matrix model which possesses the same diagrammatic expansion in the
planar approximation. Its interaction potential is oscillating at infinity with period log(q), and
may lead to interesting metastability phenomena beyond the planar approximation. The spherical
model is similarlyq-periodic, but does not exhibit such phenomena: actually its low-temperature
phase is not glassy and depends smoothly onq.

1. Introduction

Recently Parisi and co-workers [1, 2] introduced and analysed the spherical andXY spin
models with frustration, but in the absence of quenched disorder. Their aim was to test
the conjecture that the frustrated deterministic systems at low temperature behave like
some suitably chosen spin-glass models with quenched disorder [3]. They considered the
frustrated models in the limit of large dimensionalityD of the lattice, where the saddle-point
approximation becomes exact. In their analysis of these models, they showed that the high-
temperature expansion can be exactly rewritten by using theq-oscillators algebra [1, 2].
Here q measures the frustration per plaquette and varies continuously between the fully
frustrated case (q = −1, fermionic algebra) and the ferromagnetic case (q = 1, bosonic
algebra). Similarq-deformed algebraic relations have also appeared in the Hofstadter
problem of quantum particles hopping on a two-dimensional lattice in a magnetic field
[4]. This problem is closely related to the frustrated spin models, which can be considered
as simplified models of hopping in the largeD and classical limits. This relation provides
another motivation for our analysis. Finally, we note that the frustratedXY model can also
describe Josephson junction arrays in a magnetic field.

In this paper, we solve exactly the frustrated spherical model in the largeD limit,
both in the high- and low-temperature phases. We use the ‘coordinate’ representation of
the q-oscillators, which is given by theq-Hermite polynomials [5, 6]. We find that the
spectrum of the lattice Laplacian is essentially given by a Jacobi theta function; thus, it is
periodic along the imaginary axis, with period log(q). Thisq-periodicity does not affect the
low-temperature phase of the spherical model, which is rather standard and non-glassy, the
effect of frustration being quantitative only. On the other hand, we show that the spherical
model is associated to a matrix model [7, 8], which has the same diagrammatic expansion
in the planar approximation. The potential of this matrix model is oscillating at infinity,
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where it has infinitely many minima at approximate distance log(q) (see figure 2). Once the
corrections to the planar limit are considered, its states become metastable by tunnelling to
these minima: therefore, we argue that this model could have a band spectrum and possibly
behave as a spin glass. Similar phenomena could also occur in the frustratedXY model,
whose analysis is, however, left to future investigations.

The models we consider are described by the Hamiltonian

H0 = − 1√
2D

∑
〈jk〉

φ
†
j Ujkφk + h.c. (1)

The complex fieldφj ∈ C is defined on the sites (labelled byj ) of aD-dimensional hyper-
cubic lattice, and there are nearest-neighbour interactionsUij . Three different models can
be obtained by constraining the field as follows

βHG = βH0+
N∑
j=1

|φj |2 (2)

βHS = βH0+ µ
( N∑
j=1

|φj |2−N
)

(3)

βHXY = βH0+
N∑
j=1

µj(|φj |2− 1). (4)

The first is the Gaussian model, which only exists in the high-temperature phase, where the
mass term dominates the kinetic term (1). The second is the spherical model [9], which
uses the Lagrange multiplierµ to enforce the condition

∑ |φj |2 = N , N being the total
number of sites. This Lagrange multiplier is promoted to a fieldµj in theXY model (4),
whose variables are constrained to live on the unit circle|φj | = 1, ∀j .

The couplingsUjk are complex numbers of modulus one and satisfy the relation
Ujk = U ∗kj ; they are the link variables of an Abelian lattice gauge field, without kinetic
term, which produces a static external magnetic field. This is chosen in such a way as to
give the same magnetic flux±B for any plaquette of the lattice (the product of the fourU ’s
around the plaquette is e±iB). Therefore, the magnetic field should have the same projection
on all the axes of the lattice, modulo the sign. In order to avoid the choice of a preferred
direction in the lattice, these signs are chosen randomly† [1].

The ferromagnetic spin interaction is obtained forB = 0, i.e.Ujk = 1. Non-vanishing
values ofB induce a frustration around each plaquette, which is maximal forB = π ,
the fully frustrated case. Of course all the intermediate, partially frustrated cases, with
0 < B < π , are also interesting. As explained in [1], theB = 0 theory should be treated
with care, because the largeD limit is different in this case, and the normalization factor
1/
√

2D in (1) should be replaced by 1/(2D).
In order to study the previous models, the main difficulty consists of finding the spectrum

of the lattice Laplacian in the presence of the magnetic field, which is defined as:

(1f )j =
2D∑
k=1

Ujkfk. (5)

Similarly to the Hofstadter problem [4], there is a competition between the periodicity due to
the lattice and those induced by commensurate magnetic fields of the formB = 2πr/s, with

† This is a small amount of randomness, of orderD(D−1)/2, to be compared with the∼ LD randomness present
in systems with quenched disorder.
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r, s integers. Thus, we could expect a complex band structure in the spectrum. However,
there are simplifications due to the largeD limit. The authors of [1, 2] approached the
problem via the high-temperature expansion. In the case of the free energy of the Gaussian
model (equation (2)), this is given by a sum over all closed loops, as follows

βF =
∞∑

n=0,even

1

n

(
β√
2D

)n
N (n)〈W(C)〉n =

∞∑
k=0

β2k

2k
Gk. (6)

In this expression, the loopsC are arranged according to their lengthn = 2k, and their
number isN (n). For each loop, the magnetic field yields a weight, which is given by
the Wilson loopW(C), the path-ordered product of the couplingsU along the loop. The
brackets〈 〉n represent the average of this weight over all theN (n) circuits of lengthn. In
the second expression of equation (6), we introduce the notationGk for the product of the
multiplicity and the Wilson loop average.

Each loop encloses a number of plaquettes and receives a weight proportional to
exp(iBA), whereA is the sum of plaquettes with signs depending on the orientations
[10]. Due to the average over orientations and loops, the quantityGk is a polynomial in
the variable

q = cosB (7)

of order k(k − 1)/2, which is given by the maximal area enclosed by the loop. Parisi [1]
enumerated these diagrams in the largeD limit. First he showed that the same counting is
given by the Feynman diagrams with 2k external points, which are joined pairwise by lines
(propagators) intersectingI times, and have assigned the weightqI . These diagrams also
occur in the topological (largeN ) expansion of matrix models [7], where the planar limit
corresponds to no intersections, i.e. to theq = 0 case. Secondly, Parisi found a recursion
relation for the coefficients of the polynomialGk(q)—a sort of Wick theorem—which can
be accurately expressed by the algebra of theq-oscillatorsaq, a

†
q :

aqa
†
q − qa†qaq = 1. (8)

These operators [11] act on the Hilbert space spanned by the vectors:|m〉, m = 0, 1, . . . ,
as follows

a†q |m〉 =
√

[m+ 1]q |m+ 1〉
aq |m〉 =

√
[m]q |m− 1〉 aq |0〉 = 0

(9)

where

[m]q = 1− qm
1− q . (10)

Using the recursion relation, the weighted multiplicities of the diagrams of equation (6)
were neatly written as an expectation value over the ground state of theq-oscillators [1, 2]:

Gk(q) = 〈0|(a†q + aq)2k|0〉. (11)

2. Spectrum of the Laplacian and high-temperature expansion

We shall now make expression (11) more explicit by introducing the coordinate
representation for theq-oscillators. First note that in the Gaussian model (2) the quantity
Gk is nothing else than the trace of(2k)th power of the frustrated Laplacian, such that we
can write the general relation

Tr[f (1)] ≡ 〈0|f (xq)|0〉 xq ≡ a†q + aq. (12)



3144 A Cappelli and F Colomo

The xq coordinate representation,xq |x〉 = x|x〉, is given by the so-called continuous
q-Hermite polynomials [6, 12]. These are defined by:

Hn(x) = 〈x|n〉Cn Cn = ([n]q !)1/2C0 (13)

where the normalization constantC0 is fixed byH0(x) = 1 and theq-factorial is

[n]q ! = [n]q [n− 1]q . . . [1]q [1]q = [0]q = 1. (14)

These polynomials satisfy, of course, a three-term recursion relation in the indexn:

xHn(x) = Hn+1(x)+ [n]qHn−1(x) n > 1. (15)

Moreover, they obey aq-difference equation [4]† in their coordinatex, which ranges over
the intervalx ∈ [−2/

√
1− q, 2/

√
1− q]. A convenient parametrization is

x = 2√
1− q cosθ θ ∈ [0, π ]. (16)

More properties of theseq-Hermite polynomials can be found in [6], where they are defined
asHn(cosθ) = (1− q)n/2Hn(x). The most important property for us is the orthogonalizing
measureνq(x) [5, 6, 12]:∫ 2/

√
1−q

−2/
√

1−q
νq(x) dx Hn(x)Hm(x) = δn,m[n]q ! (17)

νq(x) =
√

1− q
2π

q−1/821

(
θ

π
, q

)
=
√

1− q
π

∞∑
n=0

(−1)nqn(n+1)/2 sin[(2n+ 1)θ ]

=
√

1− q
π

sinθ
∞∏
n=1

(1− qn)(1− qne2iθ )(1− qne−2iθ ) (18)

where21(z, q) is the first Jacobi theta function.
Using these results, we can rewrite the general ground-state expectation value in

equation (12) as follows

Tr[f (1)] ≡
∫

dx νq(x)f (x). (19)

Therefore, we have shown that the Laplacian is diagonal in the coordinate representation of
the q-oscillators: it has a continuous spectrum over the interval [−2/

√
1− q, 2/

√
1− q],

with eigenvalue density given byνq in equation (18).
Let us discuss this spectrum in some interesting limits. Forq = 0, we find

ν0(x) = 1/π
√

1− x2/4, which is the Wigner semicircle law for the Gaussian Hermitian
matrix model [7]. This results confirms the previous correspondence between the high-
temperature expansion of theq = 0 Gaussian model and the planar Feynman diagrams
without interaction vertices of the matrix model. Actually, this correspondence can be
extended to all values ofq (see section 4). Note also that theq = 0 frustrated model is
diagrammatically equivalent to the gauge spin glass where the couplingUjk are random
quenched variables [1]. Next, forq = −1, the measure becomes a representation for
(δ(x − 1) + δ(x + 1))/2, and we recover the two states of the fermionic algebra [5]. The
limit q → 1 is singular, owing to theD → ∞ peculiarities stated before; nevertheless,
ν1(x) becomes the Gaussian distribution, after multiplicative renormalization [5].

† This q-periodicity will be discussed better later.
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Let us now check that our expression for the Laplacian reproduces the high-temperature
expansion computed in [1, 2]. The free energy of the Gaussian model (2) can be written in
terms of the Laplacian asβF = − logZ = Tr[ln(1− β1)]. Therefore, the internal energy
U(β) is:

1− βU(β) = R(β) R(z) ≡ Tr

[
1

1− z1
]
. (20)

In the last equation, we introduced the resolventR(z), which will play a major role in the
subsequent study of the spherical model.R(z) is originally well defined for realz in the
interval |z| < zc = (

√
1− q)/2 and is then analytically extended to the whole complex

plane ofz. By using the results of the previous section, we find:

R(z) =
∫ 2/

√
1−q

−2/
√

1−q
dx

νq(x)

1− zx

=
√

1− q
z

∞∑
n=0

(−1)nqn(n+1)/2

[
K

(
2z√
1− q

)]2n+1

(21)

where we introduced

K(α) = 1−√1− α2

α
. (22)

The singularities ofR(z) in the complex plane are completely determined by those of the
simpler functionK(2z/

√
1− q). Actually, the series is very well convergent for|q| < 1

as any Jacobi theta function. Moreover, for|q| = 1, it is a geometric series, which is still
convergent because|K| < 1 for |z| < zc.

The high-temperature expansion of the internal energy of the Gaussian model can be
obtained by expandingR(β) in series; there only appear even powers ofβ with q-dependent
coefficients. We have computed the series to O(β18) with Mathematica [14], and obtained
the polynomialsGk(q), k = 1, . . . ,9 of equation (6). We have verified that they indeed
match the results of [1, 2], which were found by direct enumeration of the graphs on a
computer.

For q = 0, we haveU(β) = (β − K(2β))/β2 and the high-temperature expansion is
singular atβc = 1

2, which is the critical temperature of the Gaussian model. The specific
heat diverges as(βc − β)−1/2 at the transition, i.e. the value of critical exponentα is 1

2.
This result still holds for generic−1< q < 1 as a consequence of the relation between the
singularities ofR(z) andK(z).

3. Solution of the spherical model

We are now ready to solve the spherical model. Our approach essentially follows the original
Berlin–Kac solution of the ferromagnetic model inD = 1, 2, 3 [9]. Indeed we shall see
that the mechanism of the phase transition is the same, only the form of the Laplacian is
different. The partition function is

Z =
∫ µ0+i∞

µ0−i∞
dµ
∫
Dφ exp

[
β
∑

φ†1φ − µ
(∑
|φ|2−N

)]
=
∫ µ0+i∞

µ0−i∞
dµ exp[−Tr[ln(µ− β1)] + µN ]. (23)

The integration path overµ is along a straight line which runs in the complex plane parallel
to the imaginary axis; a positive real part has been added in order to make the integration
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overφ convergent. The trace in the exponent is proportional toN (1 is anN -dimensional
operator): in the largeN limit, we can apply the saddle-point method to evaluate the integral
overµ. The saddle-point equation is:

Tr

[
1

µ− β1
]
= 1 (24)

and must be solved for real, positive values ofµ. Introducing the variablez = β/µ, this
equation can be written in terms of the resolvent (20), as follows

β

z
= R(z) z ≡ β

µ
. (25)

In the case ofq = 0, this equation can be easily solved:

1

2z2
(1−

√
1− 4z2) = β

z
−→ z(β) = β

1+ β2
(26)

which corresponds toµ = 1 + β2. This solution is valid forz < zc = 1
2, namely it

describes the high-temperature phaseβ < βc = 1. Indeed, let us follow the saddle point
in the z plane, starting fromβ = 0, wherez = 0 as well. Upon increasingβ, z moves
towards the critical valuezc = 1

2; for β > 1, z can no longer increase because it finds the
square-root branch cut ofR(z), and therefore ‘it sticks to the singularity’ [9]. Hence, for
β > 1, the saddle-point equation no longer has an acceptable solution; nevertheless, the
leading contribution to theµ integral in (23) still comes from the neighbourhood ofz = 1

2.
Therefore, the low-temperature solution isz(β) = 1

2 independent ofβ, i.e. µ = 2β. The
free and internal energies are therefore given by

βF = Tr[ln(µ− β1)] − µ (27)

U(β) = (∂β + (∂βµ)∂µ)(βF )
= 1

β

(
1− Tr

[
1

1− z1
])
+
(

1

µ
Tr

[
1

1− z1
]
− 1

)
∂µ

∂β
. (28)

The last term in this equation vanishes in the high-temperature phase, because the saddle-
point condition is satisfied; however, it should be included for the low-temperature regime.
As a matter of fact, the result can be written in both phases as follows

U(β) = 1

β
− 1

z(β)
. (29)

More explicitly,

U(T ) =
−

1

T
T > 1

T − 2 T < 1
(q = 0). (30)

The internal energy is therefore continuous at the transition, together with its first derivative.
However, the specific heat presents a discontinuity in its first derivative. These results are
qualitatively very similar to those of the Berlin–Kac analysis [9]; nevertheless, their model
is quite different, in the sense that frustration is completely absent there.

The solution for any−1< q < 1 is a straightforward generalization of theq = 0 case.
The discussion of the saddle-point equation (25) is analogous, because the singularities
of R(z) are still given by a square-root branch cut. Although we cannot find an explicit
expression forz(β), we can follow its behaviour: starting from lowβ, where z ∼ β,
the saddle point moves towards higher values ofz until it hits the cut of R(z) at



Solving the frustrated spherical model withq-polynomials 3147

T

U (c)(b)(a)

43.532.521.510.5–2

–1.75

–1.5

–1.25

–1

–0.75

–0.5

–0.25

0

Figure 1. Internal energy of the spherical model versus temperature for three values: (a)
q = −0.707; (b) q = 0; (c) q = 0.707.

z = zc = (
√

1− q)/2. In the low-temperature phase, the value ofz sticks to zc and
thusµ = β/zc for β > βc. The critical temperature is given by

βc = zcR(zc) =
√

1− q
∞∑
n=0

(−1)nqn(n+1)/2. (31)

The internal energy is still given by the general formula (29), which now reads

U(T ) =


T − 2√

1− q T < Tc

− 1

T
− q 1

T 3
− (q3+ 3q2)

1

T 5
+O

(
1

T 7

)
T � Tc

(−1< q < 1).

(32)

A plot of the internal energy is shown in figure 1 for the three valuesq = (−1/
√

2, 0, 1/
√

2).
This can easily be obtained without solving the saddle-point equation, by usingz ∈ [0, zc]
as a parameter for bothU(β) in equation (29) andβ in equation (25). Note that forq 6= 0,
the first derivative of the internal energy is not continuous at the transition. The critical
temperature goes to infinity forq → 1 and to zero forq → −1, respectively. In these
limiting cases, we can sum the series inR(z) (21) and obtain the explicit form ofz(β) and
the internal energy. Forq = 1, we find the meaningless resultsz = β andU(T ) = 0 in the
high-temperature phase, which collapses to a point (Tc = ∞): this case has a pathologic
D→∞ limit, as discussed in [1], and a sensible theory should include 1/D corrections.

The limit q = −1 is well defined and corresponds to the fully frustrated model at
D = ∞†. Here, the high-temperature phase extends down toT = Tc = 0, i.e. there is no
transition. Actually, we find that the resummedR(z) no longer has the square-root branch
cut ofK(z) and that the mappingβ = β(z) is invertible on the whole positiveβ axis:

β = z

1− z2
(q = −1)

U = −z = 1

2β

(
1−

√
1+ 4β2

)
.

(33)

† Note that the limitsD→∞ andq →−1 do not commute, as discussed in [1].
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Let us remark that the absence of a phase transition has also been observed in the fully
frustrated long-rangeXY model [13].

In conclusion, the qualitative behaviour of the (infinite-dimensional) frustrated spherical
model in the low-temperature phase is rather smooth and standard: indeed, this model does
not present the potential features of: (i) glassy behaviour (many ground states), which is
usually found in systems with quenched disorder; (ii) commensurability in the spectrum
for B = 2πr/s, which was observed in theD = 2 hopping model in a magnetic field. In
view of point (i), we would like to remark that the corresponding model with quenched
disorder, i.e. the spherical gauge glass, does not exhibit a glassy phase either. Actually,
this model corresponds diagrammatically to theq = 0 frustrated model. In intuitive terms,
the spin variables are only loosely constrained by the spherical condition,

∑
i |φi |2 = N ,

and thus can globally adapt themselves to any complex coupling configuration. In view of
(ii), the commensurability effects are probably washed out by theD → ∞ limit, which
oversimplifies the geometry of hopping on the lattice.

On the other hand, we expect a glassy phase in the frustratedXY model [2]. In this
model, the Lagrange multiplierµ becomes a local fieldµj and the saddle-point equation
(24) is functional. Nothing changes in the high-temperature phase, where the solution
µj = µ = constant is correct. However, the solution(s) in the low-temperature phase
can be rather different from the one of the spherical model, and will not be discussed
here. Rather, we shall approach this problem from a different perspective, by establishing
a relation with the well-developed subject of matrix models.

4. Analogy with the matrix models

Let us first recall the solution of the Hermitian matrix models in the the largeN

approximation, which corresponds to the planar Feynman diagrams [7]. These models
are characterized by the(N × N) matrix variableM = M† and by the Hamiltonian
βH = TrV (M) = Tr(M2/2+ · · ·). After diagonalization of the matrix, one is left with the
partition function over the eigenvaluesλi , i = 1, . . . , N :

ZM =
∫ N∏

i=1

dλi e−
∑

i V (λi )
∏
i<j

(λi − λj )2. (34)

This can be thought of as being the statistical mechanics ofN charges with coordinates
λi in one dimension, which repel each other logarithmically and are kept together by the
external potentialV (λ). This one-dimensional gas of charges usually has a unique phase.
In the largeN limit, the partition sum is dominated by the contribution of the saddle point,
which corresponds to the equilibrium configuration of the charges, neglecting fluctuations.
Moreover, the charges become a continuum with densityν(λ), which is normalized to one
by a convenient rescaling [7]. The saddle-point equation is:

1

2
V ′(λ) = P

∫ a

−a
dx

ν(x)

λ− x λ ∈ (−a, a)
∫ a

−a
dx ν(x) = 1 (35)

whereP stands for the principal value of the integral. This is an equation for the unknown
ν(x), as a function of the given potentialV (λ). Following [7], we introduce the function

F(λ) =
∫ a

−a
dx

ν(x)

λ− x (36)

with λ taking values in the complex plane. This function is analytic outside the segment of
the real axis(−a, a) corresponding to the spectrum; moreover, it goes to zero at infinity as
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1/λ, due to the normalization ofν. For λ inside the spectrum, we have

ReF(λ) = 1
2V
′(λ) ImF(λ) = −πν(λ) λ ∈ (−a, a). (37)

The saddle-point equation is thus equivalent to these relations for the functionF(λ): they
can usually be solved by analyticity arguments, and determine the densityν(λ).

Here we would like to remark that these formulae are rather similar to those encountered
in the spherical model. Actually, we can identify the two saddle-point equations (25) and
(35) as follows

F(λ) ≡ 1

λ
R

(
1

λ

)
z ≡ 1

λ
. (38)

More precisely, the saddle-point equation for the spherical model is discussed forλ outside
the spectrum,ν(λ) is given andβ = β(z) is the unknown. On the other hand, in the matrix
modelλ is inside the spectrum,V (λ) is given andν(λ) is the unknown.

We can now define the matrix model corresponding to the frustrated spherical model,
as the one which possesses the same eigenvalue densityνq(λ), equation (18), in the planar
limit. By using equations (36) and (37), we can determine its potential:

V ′(λ) = 2 ReF(λ) = 2
√

1− q
∞∑
n=0

(−1)nqn(n+1)/2 cosh[(2n+ 1)χ ] (39)

where we introduced the convenient parametrization

λ = 2√
1− q coshχ (40)

for λ outside the cut(−2/
√

1− q, 2/
√

1− q). The Gaussian matrix model withV (λ) =
λ2/2 is indeed recovered forq = 0.

Relation (38) between the spherical and matrix models can also be understood at the
level of diagrammatic expansions. In the former model,R(z) generates the high-temperature
expansion, whose diagrams were cast into the form ofn lines joining 2n points with weight
q for each intersections [1]. In the latter model,F(1/z)/z is the generating function for
the observables〈TrM2n〉 = 〈∑i λ

2n
i 〉 [7]. Their diagrams also have 2n external points: in

the Gaussian model (q = 0), they are joined by propagator lines with no intersections, due
to the planar limit. Forq 6= 0, the spherical model diagrams have non-planar intersections,
which are reproduced by interaction vertices in the planar matrix model diagrams; actually,
the potentialV (λ) contains interactions of any order.

The spherical model in the high-temperature phase and the matrix model in its planar
limit have corresponding saddle-point equations but rather different free energies, so they
are not quite the same physical problem. The analogy with matrix models is, nevertheless,
interesting because it could provide some useful technology [8] for solving theXY model.
Furthermore, the matrix model itself could exhibit interesting physics beyond the planar
approximation: in the following, we shall put forward some educated guesses which are
based on the well known physical picture of the gas of charges.

The properties of the matrix model potentialV (λ) can be found by analysing
equation (39). A plot ofV ′(χ) is shown in figure 2, forq = −1/

√
2: away from the

origin, an oscillating behaviour sets in with period† χ → χ − (logq), and amplitude
growing to infinity. Thisq-periodicity of the potential can be found by inspection of (39),
and reads:

V ′(q−1/2eχ ) = 2

(
1− q
q

)1/2

eχ − q−1/2e2χV ′(eχ ). (41)

† The period is| logq|/2 for 0< q < 1.
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Figure 2. The first derivative of the matrix model potential in equation (39) as a function ofχ ,
for q = −0.707.

This is not an exact periodicity due to the presence of the additive term. However, this term
becomes negligible forχ far away from the origin, i.e.λ� 1, becauseV ′ grows more than
exponentially (the amplitude of fluctuations is of O(exp(2χ2/| logq|))). Theq-periodicity of
the potential corresponds to a true periodicity of the eigenvalue densityνq(θ) ∝ 21(θ/π, q),
because these two quantities are the real and imaginary parts of the functionF in (36),
respectively (their variables(x, θ) in (16) and(λ, χ) in (40) are also related by analytic
continuation). Actually, the eigenvalue density is periodic in the direction of the imaginary
θ -axis: νq(θ − (i/2) logq) ∼ νq(θ), for 0< q < 1, andνq(θ + π/2− (i/2) logq) ∼ νq(θ),
for −1< q < 0.

This periodicity can be interpreted as the potentiality for metastable states, which,
however, are not realized in the spherical model, owing to its simplified dynamics. Indeed,
its saddle-point equation involves the functionF(λ), which is alsoq-periodic, as its real
part V ′; however,F(λ) never grows sufficiently high to develop the oscillating behaviour
and, in fact, goes monotonically to zero at infinity.

On the other hand, the states might become metastable in the matrix model beyond the
planar approximation. In this approximation, the charges form an equilibrium configuration
determined by the minimum ofV (λ) at the origin, and the tunnelling of charges to lower
nearby minima is suppressed [8]: thus, theq-periodicity of the potential is not felt. Beyond
this approximation, tunnelling switches on and the states in the spectrum can become
metastable. Clearly, a detailed analysis is necessary to understand the effect of tunnelling
into a q-periodic set of local minima separated by ever-rising barriers. This might lead to
a complex pattern of metastability, which is a characteristic of the glass phase.

In conclusion, there is the possibility that this matrix model might describe some of the
expected effects of frustrated magnetic systems in finite dimensionD [3, 4]. Moreover, it
should be solvable by known techniques [8]. The frustratedXY model is another system
which might develop these effects in the low-temperature phase; it would be interesting to
pursue the relation between theXY model and the matrix model beyond the planar limit.



Solving the frustrated spherical model withq-polynomials 3151

Acknowledgments

We would like to thank Philippe Di Francesco, Enzo Marinari, Giorgio Parisi and Paul
Wiegmann for useful discussions. This work was supported in part by the European
Community Programme ‘Training and Mobility of Researchers’ FMRX-CT96-0012.

References

[1] Parisi G 1994J. Phys. A: Math. Gen.27 7555
[2] Marinari E, Parisi G and Ritort F 1995J. Phys. A: Math. Gen.28 4481
[3] Mezard M, Parisi G and Virasoro M A 1987 Spin Glass Theory and Beyond(Singapore: World Scientific)

Parisi G 1992Field Theory, Disorder and Simulations(Singapore: World Scientific)
[4] Wiegmann P B and Zabrodin A V 1994 Nucl. Phys.B 422 495
[5] van Leeuwen H and Maassen H 1995J. Math. Phys.36 4743
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